Атмосферная коррозия. Атмосферная коррозия является весьма сложным продуктом, находящимся в постоянном изменении. Поэтому описание последовательности образования различных продуктов коррозии на железе представляет условную схему. Разрушение начинается с окисления железа, т. е. появления положительно заряженной частицы железа – двухвалентного катиона и разложения воды (так как коррозия всегда начинается в присутствии влаги) с образованием гидроксид-иона. При этом получается неустойчивая гидроокись двухвалентного железа, которая затем окисляется до гидроокиси. Гидроокись существует в виде альфа и гамма – модификаций, имеющих равную кристаллическую решётку. При избытке кислорода образуется альфа-модификация, при недостатке кислорода или во влажном воздухе гамма-модификация. Кристаллографически альфа-модификация идентична минералу гетиту, гамма модификация - лепидокрокиту. Обычная рыжая ржавчина в атмосферных условиях состоит из обеих модификаций гидроокиси железа, которая, теряя воду, переходит в окись железа. При определенных условиях процесс идет дальше и на поверхности образуется закись-окись, гндратированный магнетит - соединение железа темного цвета, который после удаления воды переходит в черный стабильный магнетит, очень твердое и чрезвычайно стойкое вещество, почти не взаимодействующее с холодными кислотами и слабо - растворимое в теплых кислотах. Магнетит может защищать поверхность металла, если он образует сплошную пленку. Однако равномерное образование магнетита по всей поверхности происходит чрезвычайно редко из-за неоднородности металла, различной влажности на поверхности, загрязненности и пр.
Железо без примесей других элементов в чистом сухом воздухе хорошо сохраняется. Знаменитая железная колонна, сооруженная в 310 году в Дели, до настоящего времени не корродирует. Объясняется это тем, что она сделана из очень чистого железа, например, содержание серы в нем всего 0,006%;.кроме того, окружающий воздух не содержит вредных веществ, а также низкая влажность. Особенно опасна для железа хлорсодержащие соли, образующие хлористое и хлорное железо, которые жадно поглощают воду, давая нестойкие, расплывающиеся соединения. Как правило разрушение идет вглубь металла и имеет вид питтинга. Возможно сквозное поражение металлического предмета.
Почвенная коррозия железа. В почве образуются разнообразные продукты коррозии, которые отличаются как по своему внешнему виду и цвету, так и по своим механическим свойствам от продуктов атмосферной коррозии. Наиболее часто встречаются следующие: лимонит - порошкообразная ржавчина желтовато-коричневого цвета; сернокислая соль белого или розового цвета, образующаяся в виде порошка или струпьев; синего цвета вивианит - фосфорнокислая соль, который, залегая плотной пленкой на поверхности предмета, предохраняет его от дальнейшего разрушения; углекислое железо - сидерит и др. Тот или иной вид и состав продуктов коррозии в большой степени зависит от влажности почвы и состава почвенной влаги. При высокой влажности доступ кислорода меньше, и железо меньше подвергается окислению. Объемные изменения при окислении настолько велики, что редко предмет сохраняется целиком.
Морская коррозия. Особенностями морской коррозии железных предметов является обрастание кораллами, которое начинается сразу же после попадания предмета в морскую воду. Это подтверждается присутствием ионов кальция во внутренних слоях продуктов коррозии. Слой кораллов затрудняет доступ кислорода к поверхности металла, тем самым создавая анаэробные условия, при которых развивается коррозия под действием сульфовоостанавливающих бактерий. Под слоем кальциевых отложений рН = 8. Коррозия имеет электрохимический характер. Разрушение чугуна происходит по типу "графитизации", анодом является структурная составляющая перлит, катодом - графит. С хлором образуются двух- и трехвалентные соединения железа.
Коррозия археологического железа после извлечения его из почвы. Железо особенно чувствительно к изменению внешних условий. После извлечения из почвы состояние предмета резко меняется. Прежде всего, меняется влажность и доступ кислорода к разрушенному металлу, это приводит к резкому увеличению скорости коррозии, затем скорость коррозии несколько уменьшается, но не прекращается. При высыхании металла изменяется состав продуктов коррозии, а следовательно, и их плотность, что способствует появлению микро- и макротрещин. В трещинах находятся красно-коричневые рыхлые продукты коррозии. Рентгенографическим исследованием и ИК-спектроскопией установлено, что эти продукты коррозии представляют собой гидроокись железа, в решетку которой включены ионы хлора. Ионы хлора попадают на предмет из почвенной влаги, которая в зависимости от засоленности почвы содержит то или иное количество хлорсодержащих солей. Концентрация хлоридов в порах предмета может быть больше, чем в окружающем грунте, благодаря их передвижению к металлу в процессе электрохимической коррозии. По определенным причинам, связанным с механизмом коррозии, концентрация хлоридов выше в предметах, у которых частично сохранился металл, чем в полностью окисленных. На красно-коричневом веществе выступают капельки желтоватого раствора, в котором содержатся ионы трехвалентного и двухвалентного железа и хлора, рН раствора меньше единицы. Наличие этих веществ говорит об активном состоянии археологического железа после извлечения его из почвы.
При хранении железных археологических находок на воздухе, относительная; влажность которого выше 40%, хлорид двухвалентного железа вступает в реакцию с водой и кислородом воздуха, окисляется до трехвалентного с образованием соляной кислоты. В результате этого в реакцию вступает сохранившийся металл, одновременно увеличивается растворимость продуктов коррозии, например, магнетита. Таким o6pазом быстрее будет разрушаться тот предмет, в котором имеется частично сохранившийся металл. Растворение продуктов коррозии приводит к развитию трещин и ослаблению предмета. Активное разрушение происходит на локальных участках, в которых имеется повышенная концентрация гигроскопичного хлорида. Если первоначальное содержание хлоридов незначительно, то все они могут оказаться связанными с гидроксильными соединениями прежде, чем начнется коррозионный процесс на воздухе. Это приводит к псевдостабильному состоянию. Коррозия в этой случае также развивается, но медленно за счет окисления, например, углекислых и сернистых соединений. При наличии в продуктах коррозии гигроскопичных хлористых соединений разрушение может происходить уже при 20% относительной влажности.
В зависимости от сохранности железные археологические предметы могут быть классифицированы следующим образом.
1. Предметы, сохранившие массивное металлическое ядро. Металл прочный, поверхность его покрыта тонким слоем защитных окислов и солей. Форма предмета не искажена.
2. Металлическое ядро сохранилось частично. Предмет покрыт толстым слоем рыхлых, растрескавшихся продуктов коррозии. Форма предмета искажена.
3. Предметы, в которых металлическое ядро отсутствует-. Вся масса металла заменена рыхлыми, бесформенными окислами железа.
4. Рассыпавшиеся на куски полностью минерализованные предметы. Форму, размер предмета установить невозможно.
Наличие сохранившегося металла может быть определено радиографией, магнитным способом и по удельному весу. Если удельный вес предмета меньше 2,9, то металл можно считать полностью минерализованным. Наименее стабильны предметы, относящиеся ко второй группе, так как присутствие остатков металла способствует более активному протеканию коррозионного процесса.
Источник:
РЕСТАВРАЦИЯ МЕТАЛЛА. Методические рекомендации. ВНИИР. сост. М.С.Шемаханская М., 1989
|